Short Reference
Card

@, python’

http://www.python.org
http://rgruet.free.fr/PQR2.2.html

formatting from original source :
http://www.yukoncollege.yk.ca/%7Ettopper/COMP118/rCheatSheet.html

i r- I

Contents

Arithmetic - Strings - Assignment - print - Getting Input - i f - while -
Play again? - Lists- Text file processing - Dictionaries

Arithmetic

Constants (Number types):
* integers, e.g. 18, -341. A suffix L indicates a long integer, e.g.
34251673L.
¢ floating point values, e.g. 3.001
Operations:
* + for addition
* - for subtraction
* ¥ for multiplication
e/ for division (watch for integer division, e.g. 19 /4 =4, not
4.75)
* % for remainder or modulo, e.g. 19 % 4 =3
* ** for exponentiation, e.g. 2 ¥* 4 = 16

Strings

Constants: "This is a string"

Operations:
* =forassignment, e.g. name = "Tim Topper"
* + for concatenation. e.g. "Hi" + "Ho" --> "HiHo"
* *forrepetition. e.g. 3 * "Ho" --> "HoHoHo"

* Strings can be delimited by either double quotes " Tim" or
single quotes ' Tim".
* Multiline values can be assigned to a string by triple quoting the
contents, e.g.
silly = """Two

Lil‘les i
Trying the same thing without triple quoting results in an error,
e.g.

silly = "Two

Lines"

¢ Another method is to embed control codes for newline characters
into the string, e.g.
silly = "Two\nLines"

* The most common control codes are: \n for newline and \'t for
tab. The Python Quick Reference provides a complete list.

Like lists Python strings are a sequence type so many list commands also
work with strings.

¢ ecg.s[i] accesseselement number i of the string S.
Testing string contents:

* s.isalnum()

* s.isalpha()

¢ s.isdigit()

* s.isspace()

* s.islower()

¢ s.isupper()

¢ s.istitle()

* s.endswith(suffix)

¢ s.startswith(prefix)
Finding things in strings:

¢ s.count(substring)

« s.find(substring)

¢ s.index(substring)

* s.rfind(substring)

* s.rindex(substring)
Changing strings. Remember that strings are immutable so to make a
change "stick” you have todo, e.g. § = s.title().

* s.swapcase()

* s.upper()

* s.lower()

« s.title()

¢ s.capitalize()

* s.center()

« s.ljust()

* s.rjust()

« s.strip()

* s.lstrip(chars)

« s.rstrip(chars)

String to list:
¢ list = s.split(list)
List to string:
¢ s.join(list) wheres is the string to join the elements of
list with.

Assignment
Use = to assign a name to a value, e.g.
distance = 48.1,name = "Tim Topper".

Remember that the name has to be on the left hand side of the =, i.e.
48.1 = distanceisan error.

print
Use print to display stored values.

print list

Displays the value of each item in the list. Puts a space between each pair of
values. Example:

print "The answer is", 5 + 2, "."
displays:
The answer is 7 .

Appending a comma to the end of a print statement holds the current output
line open, e.g. the code

print "The answer is",
print 5 + 2, "."
displays
The answer is 7 .
on a single line.

For more control over output appearance embed formatting codes into

output strings. See section 2.2.6.2 String Formatting Operations of the
Python Library Reference for the gory details.

Getting Input

Use input to get numerical data from the user,
input(string)

and raw_input to get string data.

Both display string (if given) and then read a line of input, by default from
the keyboard. The difference is that raw_input just returns the string,
while input evaluates it as a Python exprssion and returns the result.
Example:

distance = input(" Enter the distance in miles: ")
name = raw_input(" What is your name? ")
N.B. the spaces before the second " in each case.

if
Use if to execute one block of code or another, but not both.

if test:
statements

elif test:
statements

else:
statements

N.B. the eLif and else statements are optional as shown in the first two
examples below.

Examples:

if x < 0: print x, "is negative"
if flip == 1:

print "You got heads"
else:

print "You got tails"
if num < 0:

print "The number"”, num,
elif num == 0:

print "The number", num,
nor negative."
else:

print "The number", num,
while

"is negative."

"is neither positive

"is positive."

Use while to execute a block of code multiple times.

while test:

statements
Examples:
x=1
while x < 10
print x

X=x+1

num = input("Enter a number between 1 and 1600:

while num < 1 or num > 100:

print "Oops, your input value (", num, ") is
out of range."

num = input(“Be sure to enter a value between
1 and 100: ")

Play again? Repeating a program

again = "y"
while again == "y" or again == "Y" or again ==
"yes" or again == "Yes":

#

Put the body of your program here

#

again = raw_input("Play again (y/n)? ")

print "Thanks for playing"

Lists

Unlike many languages Python provides a built-in list type. A list constant is
just a list of items separated by commas and placed inside square brackets,
eg. ["Tim", 42, "Molly"].

Python provides for a wealth of list operations (complete list in reference
manual):
¢ 1listl + list2:concatenates Listland list2
e list[i]:accesselement numberiin list.
¢« len(list) :returns the number of elements in List
e del list[i] :deletes element number i from list
¢ list.append(value) :appendsvalueto list
e list.sort() : sortsthe elements in List
¢« list.reverse() : reverses the order of the elements in
list
* list.index(value) :returns the position of the first
occurrence of value in list
e list.insert(i, value) :inserts valueinto list at
position i
¢ list.count(value) :returns a count of the number of
times value occurs in List
¢ list.remove(value) :deletes the first occurrence of
valuein list
* list.pop() : deletes and returns the last value in List
¢ value in list:isTrue if value occurs in list and
False otherwise
N.B. the elements in lists are numbered from (, not 1.

Text file processing
To read from a file a line at a time:

infilename = raw_input("Name of file to read
from: ")
infile = open(infilename, "r")
for line in infile:

Do stuff with line.

Remember that line is a string even if it
looks like a number,

e.g. num = int(line)
infile.close()

There's more than this of course. You can also read the entire file into a
string in one fell swoop using infile. read(), read the entire file into a
list of strings (one per line in the file) using infile.readlines(),or
read a certain number of bytes using infile.read(N) where N gives
the number of bytes to read.

To write to a file:

outfilename = raw_input("Name of file to write
to: ")

outfile = open(outfilename, "w")

print >> outfile, ...

outfile.close()

For more see the Python library reference on File Objects.

Dictionaries

Python provides a built-in lookup table type it calls a dictionary (often
called hash tables in other languages).
A dictionary constant consists of a series of key-value pairs enclosed by
curly braces,e.g.d = { 'Tim' : 775, 'Brian' : 869 }.This
creates a dictionary we can visualize as:
Key Value
Tim* —> 775
‘Brian’ —> B69
Common dictionary operations include:
e d['Tim"'] Accessing an element.
« d['A-S'] = 770 Modifying or inserting a value.
« d.has_key('Brian’') Checking to see if there is a value
for a particular key.
* d.keys() Getalist of all the keys in the dictionary. Often used
for iterating through the entries in the dictionary.
* d.values() Get alist of all the values that occur in the
dictionary.
e« del(d['Tim']) Delete an entry in the dictionary.
* d.clear() Delete all the entries in a dictionary.

